
1

3.2.2 Software Engineering Specific Skills

3.2.2.1: Skill Sets Developed: This set of skills for the Software Functional
Band Team has been revised to reflect the specific skills that need to be
highlighted as a software engineer within the STRICOM Engineering Directorate.

Software Engineering Specific Skills: Section:
Operating Systems (OS) 3.2.2.3.1
Programming Languages (PL) 3.2.2.3.1
Software Architecture (SA) 3.2.2.3.2
Software Configuration Management and Quality Assurance (SCM/QA) 3.2.2.3.3
Software Cost Estimation (SCE) 3.2.2.3.4
Software Development and Support Process (SDSP) 3.2.2.3.5
Software Development Methods and Tools (SDMT) 3.2.2.3.6
Software Measurements and Analysis (SMA) 3.2.2.3.7
Software Requirements Analysis (SRA) 3.2.2.3.8
Software Resource Estimation (SRE) 3.2.2.3.9
Software Test Engineering Methods (STEM) 3.2.2.3.10
Trusted Software Development Methodology (TSDM) 3.2.2.3.11

3.2.2.2 Personnel Assigned as SME: The personnel assigned to the Software Functional Band Team are
assigned SME skill areas inorder to insure that training and elements of the skills are kept up to date in this
document. The review of these skill areas will be accomplished by team and will be made available for
editing of this document.

3.2.2.3 Skill Qualifications and Developmental Process: This section will delineate the skill qualification
and development process for skill acquisition and maintenance from entry level through subject matter
expert (SME). The process will show the education, tasks and OJT needed to maintain mastery of the skill.

3.2.2.3.1 Operating Systems and Programming Languages: Although the areas of skill are combined
into one section it is believed that if an Engineer is to be successful in one that they must have significant
knowledge of the other associated skill. Therefore the two skills are treated as one skill set. This section
will addresses each skill separately for ease of clarification of needed training and OJT requirements.

Operating Systems (OS):

Description of Skill:

The engineer shall have a working knowledge of modern Operating System concepts, principles and
implementations for the commonly utilized computer systems in the modeling and simulation domain.
Skill emphasis is on having a broad understanding of the various aspects of Operating Systems as well as a
user-level ability to perform fundamental computer system tasks.

Basic/Minimum Knowledge:
• What is a Portable Operating System Interface for Computer Environments (POSIX) compliant OS

• What is meant by the term: 16-bit, 32-bit, 64-bit OS

• What is meant by the term multiprogramming

• OS Development Scheduling

• Schemes for non-real-time Operating Systems

• Schemes for real-time Operating Systems/applications

• Thread states: running, blocked, & ready

• Preemptive versus non-preemptive

2

• Differences between Unix, Win95, & WinNT

• Relationship between threads and processes

• Thread/process priority

• Asymmetric vs. symmetric multiprocessing (SMP)

• To what level do Win95, Win98, WinNT, LINUX, and Unix types of Operating Systems support
multiple processors

• Virtual memory

• Methods available for processes to share data (shared memory, …..)

• Dynamic-link libraries (Win95/NT): define; describe pro’s and con’s

• How operating systems address error handling

• OS File systems operation

• Purpose and usage of OS

• Impact of block-size on storage capacity; performance

• Largest file size for various Operating Systems

• Access restriction features of various Operating Systems

• Swap space

• Screen Interfaces

• Command Line Interfaces

• Graphical User Interfaces (Windows, X-Windows/Motif)

• Daemons

• User-level and root/administrator level accounts and uses of each

Training or Work Assignments Contributing to Basic Knowledge:
� Various training classes on Operating Systems (Entry Level) to gain familiarity with each Operating

System

� Training in theory/concepts of Operating Systems (Theory behind Operating Systems. Not tied to a
specific Operating System)

Developmental Path:
Continued Training in various Operating Systems to gain specific/detailed knowledge of various Operating
Systems. (This will also help in determining which Operating System may be the best choice for a specific
application/project.)

Sustainment to Maintain Expertise:
• Training (Hands on preferred) to keep up with new versions/changes in various Operating Systems

along with any new Operating Systems that may arise.

• Knowledge sustainment: At least 30-min per week of reading to keep up with new changes and
continued learning of other Operating Systems.

• Ability sustainment: At least one 1-hour hands-on session per month to gain expertise/experience in
using Operating Systems (not just theory).

3

Programming Languages (PL):

Description of Skill:
The engineer shall have a working knowledge of modern standardized Programming Languages. The
engineer should know concepts, principles and implementations for the commonly utilized Programming
Languages in the training, modeling and simulation domain. Skill emphasis is on having a broad
understanding of the various aspects of Programming Languages and the differences/advantages between
them. As the military increases their reliance on computing resources to dominate the battlefield of the
future, engineers engaged in the development of all types of military equipment must increase their
knowledge of software programming languages and the impact these languages can have on the success of
their project.

Basic/Minimum Knowledge:
• Understand the need for a diverse set of software programming languages to solve computational

problems.

• Understand the use of a software development metrics program and technical documentation (i.e. trade
studies) to support software programming language selection.

• Understand the impact of software programming languages on a project’s level of effort, costs, staffing
and training requirements.

• Understand the advantages and disadvantages (strengths and weaknesses) of different software
programming languages.

• Knowledge of COTS (commercial-off-the-shelf) software, re-use driven approaches, certifications
(ISO 9001 and SEI capability maturity model), and reengineering.

• Must possess the skills, knowledge and abilities to advise, assist, inform and educate the other
members of a project team in all matters related to programming languages.

• Ability to communicate clearly, in non-technical terms, in oral and written form, on matters related to
programming language selection, impacts, issues and recommended solutions.

• Ability to review and understand software code.

• Ability to review and understand technical papers and documentation (i.e. trade studies, CDRLs)
related to programming languages.

• Ability to assess the impact of software programming languages on a project’s level of effort costs,
staffing, and training requirements.

• Ability to discuss the advantages and disadvantages (strengths and weaknesses) of different software
programming languages.

• Knowledge of resources and available assets related to programming languages.

Training or Work Assignments Contributing to Basic Knowledge:
TASKS to gain basic knowledge:
• Demonstrate the ability to read and understand software code written in two software programming

languages.

• Prepare a brief synopsis of what a software program (or part of a program) does during its execution.

• Ability to identify key areas and constructs within the software code.

• Explain how choices of programming language tools affect the level of effort and cost of software
projects.

4

Developmental Path:
• A one or two semester sequence in fundamental programming concepts including common data

processing algorithms, constructs and data structures found in most programming languages.

• A one or two semester sequence in a particular standardized programming language focusing on
implementing the common data processing elements above utilizing the syntax and semantics of the
language. This course should include the use of software engineering tools.

• A one semester sequence in a second programming language focusing on the syntax and semantics of
the language. This course should include the use of software engineering tools.

• A one semester sequence in an advanced programming language topic i.e. language design, compiler
construction, tool development.

Training or Work Assignments Comprising Developmental Path:
• Initial assignment to a project under the mentoring of a senior software engineer for a period of 3-12

months.

• Progressive assignment to projects with increasingly complex software.

• Assignment to projects utilizing any of the programming languages studied or utilizing a combination
of the languages studied.

• Assignment as a mentor to a junior software engineer on a software intensive project.

Sustainment to Maintain Expertise:
• Self-education utilizing CBT, web-based tutorials, and self-study.

• Attendance at a conference discussing programming languages once every 5 years.

• Periodic monitoring of electronic newsgroups and mailing lists dedicated to programming language
issues.

• Training in programming languages that the employee does not have prior expertise in.

• Training in development of applications using a standardized programming language (hands-on
training/experience.)

3.2.2.3.2 Software Architecture (SA):

Description of Skill: There is no universally accepted standard for software architecture. It is still a
developing field in software engineering. A good description of software architecture comes from Bass,
Clements, and Kazman. Software Architecture in Practice, Addison-Wesley 1997: which states:

• The software architecture of a program or computing system is the structure or structures of the
system, which comprise software components, the externally visible properties of those components, and
the relationships among them.

• By "externally visible" properties, we are referring to those assumptions other components can
make of a component, such as its provided services, performance characteristics, fault handling, shared
resource usage, and so on. The intent of this definition is that a software architecture must abstract away
some information from the system (otherwise there is no point looking at the architecture, we are simply
viewing the entire system) and yet provide enough information to be a basis for analysis, decision making,
and hence risk reduction.

The primary skill is the ability to analyze software architectures to determine the ability to satisfy
functional and interface requirements, and to assess the capabilities and tradeoffs for the achievement of
qualities such as performance, availability, and survivability. It is cost effective to try to determine, before a
system is built, whether it will satisfy its desired qualities. STRICOM software engineers should be able to

5

identify or develop risk mitigation methods that can be done early in the software development life cycle
when it is relatively inexpensive to change architectural decisions. It is also important to be able to analyze
the architecture of the countless legacy systems in existence. Unfortunately, the architectures of legacy
systems are frequently undocumented or existing documentation is inaccurate due to the unavoidable
architectural drift and erosion making analysis impossible. Software Engineers should have the necessary
skill to reconstruct architectures from source code and to check the conformance of as-built systems to their
documented architectures.

Software Engineers should possess the skills needed for participating in the development and
validation of the technology and techniques necessary for analyzing software architectures, specifically:
attribute-specific models, representation approaches, analysis methods, reconstruction and conformance
tools and techniques. Software Engineers should be capable of using tools and methods for representing
varying views of software architectures.

In summary, Software Engineers who are skilled in SA should be able to:
• Establish, implement, and transition validated techniques for analyzing the effect of software
architectural decisions on selected product quality attributes.
• Establish, implement, and transition validated techniques for reconstructing the architecture of legacy
systems and for determining the conformance of as-built systems to defined architectures.
• Establish, implement, and transition validated techniques for representing software architectures
• Promote understanding of software architecture and architecture analysis.

Basic/Minimum Knowledge:
• Basic knowledge of what software architecture encompasses.
• Knowledge that any design involves trade-offs. Modifiability affects performance, security affects
modifiability, scalability affects reliability, and everything affects cost.
• Prescriptive method implicitly or explicitly assumes that some of these qualities are more important
than others do and guides users toward the maximization of that goal.
• Elementary knowledge of techniques used for designing, building, and evaluating software
architectures.
• Software architecture is the development product that gives the highest return on investment with
respect to quality, schedule, and cost.

Training or Work Assignments Contributing to Basic Knowledge:
• The employee should have the opportunity to work on a software intensive project to gain experience
working with a real world software architect and dealing with all of the issues that accompany managing
the development effort.
• There are numerous Software Architecture Publications that possess information that will give the
employee basic knowledge of software architecture and the importance a well designed architecture plays
in a development project. (The SEI website has a list of publications dealing with software architectures.)
• SEI has a good series of slides that describe software architecture. It is called: “What is Software
Architecture? And Why Do I Care?". It can be downloaded (Postscript file, can be viewed with
Ghostscript) at: ftp://ftp.sei.cmu.edu/pub/sati/Papers_and_Abstracts/what_is_sw_arch.slides.ps
• Attending SAM 101 and SAM 201 Defense Acquisition University Courses will give the employee
basic knowledge of software architectures along with numerous other software related topics.

Developmental Path:
• Skills needed to be proficient in the area of Software Architectures:

• All of the above mentioned skills and abilities.
• Knowledge that reusable components are best achieved within an architectural context. But
components are not the only artifacts that can be reused. Reuse of architecture leads to the creation of
families of similar systems, which in turn leads to new organizational structures.

• Comprehensive knowledge of sets of techniques for designing, building, and evaluating software
architectures.
• Understand techniques for quality requirements in the context of an architecture and for building
architectures that meet these quality requirements.

ftp://ftp.sei.cmu.edu/pub/sati/Papers_and_Abstracts/what_is_sw_arch.slides.ps

6

• Knowledge of architecture description languages as a means of describing and validating software
architectures and techniques for analyzing and evaluating an architecture’s fitness for its purpose.
• Knowledge of a number of different architectural tools (layering, multiple views, patterns,
blackboards, and so forth) and techniques (analysis methods, integration strategies, engineering principles).

Training or Work Assignments Comprising Developmental Path:
• The employee should have experience as the software engineer on a large software intensive system to
gain experience with managing a program dealing with a large software architecture.
• The employee can gain more extensive knowledge of software architectures by reading many, more
advanced publications dealing with software architectures. SEI has a good website with a list of many of
these publications. It can be found at: http://www.sei.cmu.edu/architecture/projects.html
• Attending the Advanced Software Acquisition Management (SAM 301) Defense Acquisition University
Course will give the employee information on software architectures along with program management form
software prospective.
• Attend Events (Conferences, Workshops, etc.) dealing with Software Architectures to discuss software
architecture issues with colleagues. This will give the employee up to date information on software
architecture knowledge and practices along with lessons learned from real world projects. A web address
showing various Events concerning Software Architectures is at:
http://www.sei.cmu.edu/architecture/events.html

Sustainment to Maintain Expertise:
The field of Software Architecture is still developing and therefore is very dynamic. To maintain a level of
expertise, the employee must keep up with the latest developments in tools and techniques dealing with
software architectures. This can be accomplished by keeping up to date with new publications dealing with
software architectures. Also, attending numerous events dealing with new concepts in the area of software
architectures will give the employee an up to date view of what is happening in the field of software
architectures.

3.2.2.3.3 Software Configuration Management and Quality Assurance (SCM/QA):
Software Quality Assurance (SQA):

Description of Skill: SQA is a special discipline of the overall QA effort. SQA is a planned and
systematic pattern of all actions necessary to provide confidence that software is adequately developed,
tested and supported throughout its life cycle by:
• Establish checkpoints and procedures to validate, and verify software activities of others
• Create products and services that conform to the established software quality requirements and

common recognized practices
SQA activities involve administrative and technical work concerned with monitoring, controlling and
maintaining the quality and reliability of hardware, software, integration, services or processes. A person
that normally assigned to this task ensure that program software quality aspects are adequately considered
in pre-award (i.e., software development plan), design reviews (i.e., code walkthrough), configuration
audits (i.e., physical and functional), quality management system audits (i.e., metrics reporting), production
readiness reviews (i.e., checkout), etc

Basic/Minimum Knowledge:
• Has strong math background and analytical ability.
• Has keen observation and trouble-shooting skills.
• Ability to review software code.
• Proficient in the use of software development tools to gain visibility into the software development

process.
• Capable of establish monitoring and control activities (i.e., metrics) and reporting findings through an

independent chain of command.
• Understand the various types of specification requirements and design parameters involved in software

development, and testing. Understand related quality assurance policy, procedures and responsibilities
and their implementation. Resolve issues without provoking resentment relating to software

http://www.sei.cmu.edu/architecture/events.html

7

processing and maintaining a set of standardization documents to document software development
progress.

Training or Work Assignments Contributing to Basic Knowledge:
• Courses in programming language(s), a degree in computer engineering or advanced mathematical
/statistical field. Two introductory courses taught by the Joint Logistics Commanders, Joint Group on
Systems Engineering includes PSM and Risk Management. Other courses will be added as they are
developed.

• Attend workshops, seminars, or conferences focusing on SQA. These include the SISO conference, The
ITSEC conference and other vendor and corporate conferences as available.

• Courses in maximize Rate-of – Returns by implementing SQA.
• DAU courses for entry-level applications include PQM 101,103, and 104.

Development Path:
Activities need to establish the mid-level development activities are:
• Establish or assist in the establishment of the SQA function at STRICOM.
• Establish or implement SQA functions as part of the overall software development process at STRICOM.

Training or Work Assignments Comprising Development Path:
• Job assignment at Contractor’s plant working with the DCMC personnel.
• Job assignment at other MACOM where SQA organization is still part of the infrastructure.
• Mid level DAU courses include: PQM 201,202,203

Sustainment to Maintain Expertise:
• Present findings on the benefits of SQA.
• Serve as the SME on the subject of SQA.
• DAU course PQM 301 and certification in the PQM arena

Software Configuration Management (SCM):
Description of Skill: SCM is the application of technical, administrative and surveillance effort to gather
and maintain the functional and physical baseline of a software item, (Configuration Control), and to record
and report change processing and implementation status (Configuration Status Accounting). It also
includes supporting periodic quality assurance/technical reviews and audits (Configuration Audits).

Basic/Minimum Knowledge:
• Understand basic SCM practices and be able to implement establish SCM policies.
• Change control methods/procedures such as configuration control boards (CCBs) and the

documentation necessary to support.
• Be organized and be proficient in using the CM tools.

Training or work Assignments Contributing to Basic Knowledge:
• Attendance at seminars/workshops on the latest CM methods and tools.
• Proficient in Personal Computer, Database, Data-Mining and Data Management.
• DAU courses to include: LOG 101

Developmental Path:
• Establish or maintain SCM database for rapid/seamless input and retrieval of data.
• Establish and implement STRICOM-wise SCM process and procedure.
• DAU courses to include LOG 201, 203, and 204

Sustainment to Maintain Expertise:
• Provide periodical refinement of the SCM methods, process, procedure and products to meet/exceed

the demands of STRICOM users.
• Joint Logistics Command courses on CM and Practical Software Management.

8

3.2.2.3.4 Software Cost Estimation (SCE):

Description of Skill: Despite the terminology, software cost does not refer directly to the dollar
figure associated with software development. Software Cost Estimation (SCE) consists of the
following three elements:
• Manpower loading is the number of engineering and management effort personnel allocated to
the project as a function of time.
• Effort is defined as the engineering and management effort required to complete a project,
usually measured in units such as person-months. The types and the levels of skills for the
resources will come into play here.
• Duration is the amount of time (usually measured in months) required to complete the project.

A SCE process is the set of techniques and procedures that an organization uses to arrive at a
software cost estimate. Generally there is a set of inputs to the process (e.g., system
requirements) and an output of effort, manpower loading, and/or duration. The knowledge of how
much each of the above elements influences the SCE process output will influence the final cost
estimate figure. Deciding which factors to include and combining then to arrive at the estimate
make up the software cost estimation process.

Basic/Minimum Knowledge:
• Understand the advantages and disadvantages of different software development cost
and schedule estimation methods.
• Use of a software development metrics program to support estimation
• Understand the importance of new costing concepts and paradigms
• Knowledge of COTS (commercial-off-the-shelf) software, re-use driven approaches,
certifications (ISO 9001 and SEI capability maturity model), and reengineering

Training or Work Assignments Contributing to Basic Knowledge:
The work assignments related to this skill are: assignment to a development al project as an
assistant software engineer for the gathering of requirements and cost coordination in contract
negotiation, assignment of to a fielded system for CCB support and estimation of maintenance
and sustainment costs for a major training system that is currently used in the field.

Training should include courses at the local University level and industry provided training that is
general enough in nature to cove the major elements of SCE.

Developmental Path: Through participation in such activities as a Requirements Analysis phase,
the engineer will be able to understand the scope of the program from its infancy. Then he/she
will use this information along with the other factors listed above (manpower, effort and duration)
to calculate the effort required to complete the program using some sort of computer model such
as the Constructive Cost Model (COCOMO) . This information will aid the engineer during
activities such as a Source Selection Board to make an informed decision on all the bidders
proposals.
A formal approach would include taking the following DAU courses:
• BCF 101 – Basics of Cost Analysis - Fundamentals of Cost Analysis enables DOD personnel
new to the cost estimating field to prepare materiel system life cycle cost estimates. The course
covers DOD policies governing these estimates and the techniques used in their preparation.
Topics include a statistics review, regression analysis, learning curves, risk analysis, software
cost estimating, exploratory data analysis, inflation adjustments, cost as an independent variable
(CAIV), analysis of alternatives (AOA), contract cost structure, earned value, cost estimation for
budget preparation, and economic analysis. Students apply the techniques they learn in a series
of case studies.
• BCF 206 – Cost Risk Analysis- Cost Risk Analysis prepares cost analysts to model the cost
risk associated with a defense acquisition program. Topics covered include basic probability

9

concepts, subjective probability assessment, goodness-of-fit testing, basic simulation concepts,
and spreadsheet-based simulation. Practical exercises, a small-group workshop, and a capstone
article review reinforce techniques taught.
• BCF 208 – Software Cost Estimating - Software Cost Estimating is primarily for practitioners of
software cost estimating. The course is designed for cost analysts and others whose duties
should include estimating the cost of software development efforts or reviewing such estimates.
Topics in the course include software life cycle management, architecture, interoperability,
software development paradigms, software design approaches, metrics, capability evaluations,
risk analysis, software reuse, open systems, function points, and software cost estimating
models. Two software cost estimating case studies allow students to apply the course material.

Training or Work Assignments Comprising Developmental Path:
The software engineer should lead increasingly complex software intensive engineering efforts
for programs and should develop SCE packages based on knowledge from the formal training
packages. The SCE should know how to use and present concepts resident in CASE tool
packages which measure and analyze SCE concepts and to work with contract personnel to insure
the best development methods are being used for cost-benefit requirements. The SCE engineer
should use or create briefing/review material which describes methodologies and provides
engineering input data for program directors decision making process.

Sustainment to Maintain Expertise: The SCE engineer must learn and operate the latest
versions of software estimating tools like COCOMO. Attend conferences/symposiums, which
provide the engineer with knowledge of the latest information available in SCE analysis. Maintain
proficient in SCE methodologies by membership in professional organizations such as INCOSE
and IEEE and to read technical journals and publications concerning SCE and participate in
technical conferences and presenting papers at professional organizations meetings for review by
peers.

3.2.2.3.5 Software Development and Support Process (SDSP):
Description of Skill: Provides a focused approach for development of a software product. Performs the
role of integrating the technical disciplines to achieve the customer’s objectives. Provides process
definition and improvement in all areas of software development, including: Requirements Management,
Project Planning and Tracking, Project Estimation, Software Quality Assurance, Functional and
Design Specification, Configuration Management, Testing, Change Management, Verification and
Validation Efforts, and Post Deployment Support

Basic/Minimum Knowledge: Basic knowledge includes the following capabilities:
• Ability to listen and learn (not be a bag of hot air)
• Ability to give credit where credit is due and not always seek one’s own credit
• Ability to do hands on work
• Ability to work in a team
• Patience in dealing with other organizations to foster cooperation
• Capability to Analyze Candidate Software Solutions
• Ensure Software Quality
• Familiarity with CASE Tools and Programming
• Domain Expertise
• Coordinate with Contractors and Customer
• Derive and Allocate Software Requirements
• Manage Software Configurations
• Participate in Definition of Organization's Software Engineering Process
• Evolve Software Architecture
• Manage Risk Integrate Disciplines

10

• Monitor and Control Software Technical Effort
• Manage Software Product Line Evolution
• Integrate Software
• Plan Software Technical Effort
• Manage Software Engineering Support Environment
• Understand Customer Needs and Expectations
• Provide Ongoing Knowledge and Skills in Simulation Domain
• Verify and Validate System
• Coordinate and Participate in Software Testing

Training or Work Assignments Contributing to Basic Knowledge:
Training should include participation in professional organizations such as SISO, IEEE, I/ITSEC
and other organizations that deal in the SDSP. SEI and other industrial organizations and
associations provide a great deal of SDSP related conferences and symposia for development of
these skills. Training provided by contractors that are prime on major command projects is a very
good source of instructional material. University courses from computer science departments on
initial development and logistics support are valuable. Courses in Software Logistics Support are
being offered in the industrial engineering departments.

Assignment as a Systems/Software Engineer here at STRICOM. Types of assignments are
typified by the projects listed below:

• AC-130U Navigator/Fire Control Officer (NAV/FCO) Test Bed

• Close Combat Tactical Trainer (CCTT)

• Federation Test System (FTS)

• Modular Semi-Automated Forces (ModSAF)

• Semi-Automated Forces (SAF)

Developmental Path:
The development path should include duties from initial development through lifecycle support of
an item. The developmental path is broken up into 3 sections:
Entry level: At this level the individual should be a part of a developmental item team. The person
should be responsible for configuration Control of documentation and ECP items. The engineer
should be provided the opportunity to review for completeness the code and the supporting
documentation and be provided oversight and guidance in the conclusions offered. The engineer
should be given opportunities to brief contractor staff on decisions and actions to be taken. The
engineer should be allowed to attend professional meetings and present briefings on project
topics.
Mid Level: The engineer should be given the responsibility for the overall vision of the project and
provide the PD with the technical aspects of of the project from cradle to grave. They should
prepare estimates for cost (manpower) and schedule. They should be responsible for accurate
and timely documentation support and should be able to answer issues of both higher command
and support contractor support.
SME should be made responsible for overall technical aspects of item lifecycle from development
throughout usage. The engineer should be fully aware of all documentation, briefings, issues,
ECP and support issues tied with the project. The SME is responsible to the PM for complete
knowledge of all technical issues and solutions.

Training Path:
The training of the engineer is an on going process. The process is divided into the three levels
as depicted above.
The entry-level engineer should take at least one of the following three DAU certification paths:
SPRDE (SYS 101), Testing (TST 101) or Logistics (LOG 101). In addition the engineer should

11

take University and Industry instruction in Software Logistics Management, Software Cost
Estimation, Development issues and lifecycle support issues.
The mid-level engineer should take the next series of DAU courses for certification. In addition
the mid-level engineer should participate in professional organizations which support this effort
and also study industrial and government standards on documentation, logistics control and
software development CASE tools and evaluations.
The SME must finish at least one certification, and most likely 2. Should have a minimum of a
graduate degree in a Software intensive engineering field. The engineer should belong to at least
one professional organization e.g. IEEE, SNE, SISO, I/ITSEC, MORES etc. The engineer must
maintain professional competence through seminars, briefings and symposia which delineate
changes and enhancements to the field.

Sustainment to Maintain Expertise:
Sustainment of experience is through professional organizations, symposia, conferences and
technical meetings. Post Graduate courses, which are directly tied to this area, are encouraged.
Briefings and presentations to technical judged symposia and conferences to include process
definition organizations such as SPC and SEI. The SME must also be involved in Joint
operations projects that involve FMS and joint services agreements.

3.2.2.3.6 Software Development Methods and Tools (SDMT):

Description of Skill: - SDMT covers the traditional waterfall, spiral, and Objected-Oriented Technology
modeling, Non-Developmental Items (NDI) to the complete use of COTS to develop a system. The life
cycle activities associated with SDMT are similar to system engineering: Requirement definition, design,
test, validation and sustainment. There are many different tools and languages supporting different types of
process (e.g., waterfall and Object Oriented (OO)) definition (e.g., requirement generation), modeling (e.g.,
functional & Behavioral), and simulation (e.g., virtual, constructive) and they change as the technology
changes.

Basic/Minimum Knowledge: This is a field that one must understand the past SDMT and be able to
comprehend the new trends. One should have degree/or working knowledge on Software Development,
Acquisition, and software engineering. One must also frequently attend trade-shows, and product demo.

Training or Work Assignments Contributing to Basic Knowledge: DSMC/DAU has several courses
lead to certification in Software Acquisition Management. Software Technology Support Center at Hill Air
Force Base has an extensive library/topics on SDMAT. There are a lot of lessons learned (undocumented)
about the goods and the bad of software acquisition at STRICOM and DOD. There are product demo(s)
and trade-shows one can attend all year around. However currently there is no gage or metrics or outlets to
measure ones understanding of SDMAT. There needs to be feedback mechanism setup and a well-defined
depository to increase the level SDMAT awareness. This will be the task of the SDMT skill lead in the
future.

Developmental Path:
Entry Level: Be able to identify software development methods to include:
• Choice between evolutionary, incremental, or waterfall development methods
• Choice of SW requirements analysis and design methods (e.g., Data flow oriented, Data structure

oriented, Object oriented)
• Software peer review methods
• Coding, unit test, and integration methods
Mid-Level: Be able to identify the types of tools used for each development period of the software life
cycle:
• Requirements, Analysis, Specification, and Design Tools (e.g., Test Case
Analysis and Generation, Graphical Modeling Tools);

12

• Programming and Debugging Tools and Components (e.g., Ada Compilers and Programming, C/C++
Compilers and Programming Components, CORBA-Related Products, Embedded Systems
Development, Java Programming);

• Testing and Test Management Tools
• Database Design and Development Tools
• World Wide Web Development Tools (e.g., Java Programming Environments Web Page and Site

Editors) **Note—C4I Systems currently utilized web pages.
• Project, Process, and Product Management Tools (e.g., Configuration Management and Version

Control Problem Tracking Systems)
• Rapid Application Development Tools
• Middleware and Connectivity Products (e.g., CORBA-related Products)
• Other Tool Categories (e.g., GUI Builders, Program Analysis and Metrics, Frameworks and Integrated

Environments, Simulation, License Management)

Subject Matter Expert: Be able to identify the type of tools used based upon the system modeling
approach required (e.g., state machine, virtual – constant delta time intervals, constructive -- time stepped,
irregular intervals)

Training or Work Assignments Comprising Developmental Path:
• Attend in-house sponsored courses (e.g., Introduction to Object-Oriented Technologies for Engineers

by Software Productivity Consortium)
• DAU courses to include:

• Entry Level: SYS 201. SAM101.
• Mid Level: SYS 301, SYS 211, SAM 201.
• SME Level: SAM 301

• Attend university courses
• Attend short contractor sponsored courses
• Assignment to a virtual simulation project
• Assignment to a constructive simulation project
• Assignment to a C4I project
• Assignment to research efforts

Sustainment to Maintain Expertise:
• Ongoing personal web research and reading (e.g., Index of Software Development Methods and Tools

http://www.methods-tools.com/html/tools.html)
• Attend professional meetings and conferences (e.g., Software Technology Conference)

http://www.methods-tools.com/html/tools.html

13

*****3.2.2.3.7 Software Measurements and Analysis (SMA):

Description of Skill:
This skill focuses on data-driven decision making. This data-driven decision making is based on
a measurement program that provides information that improves decision-making in time to affect
the outcome of the process and/or project. A measurement program can: (1) Provide early
insight into program risks and potential problems, (2) Provide quantitative support for
management decision making, (3) Help forecast trends, (4) Provide visual indicators of progress,
(5) Correlate diverse data and trends, and (6) Track effectiveness of corrective actions. A
measurement program can not: (1) Fix a problem or eliminate risk, (2) Identify the solution to a
problem, (3) Guarantee product quality, or that the product meets mission goals.

Basic/Minimum Knowledge:
This skill requires a framework to be able to establish a measurement program for a given project
or an organization. The following is a description of a framework (or process) for adopting
software measurement in an organization/project.

A – ESTABLISH A SUPPORTIVE CULTURE. The purpose of this task is to ensure there is
management sponsorship for the adoption of software measurement technologies. Following are
tasks to establish a supportive culture:
• Understand the organization’s mission and goals
• Establish (or develop) sponsorship for adopting software measurement
• Establish measurement roles and accountability at all levels of the organization

The more significant elements of a supportive culture include:
• Proactive leadership
• Supportive management style
• Open organizational communications
• Quality-oriented work environment

B – DETERMINE CURRENT MEASUREMENT CAPABILITY AND USE. The purpose of this
task is to determine how well an organization is using measures and how ready it is for additional
technology adoption. The steps for determine the current measurement capabilities include:
• Examine (or evaluate) current use of software measures.
• Examine underlying organizational readiness to implement software measurement.
• Determine current information needs, including project progress, product quality, and process

effectiveness.

There are two factors that make the difference in this area to support and effective measurement
program. The following two factors are additive to the factors noted above.
• Educated management expectations.
• Effective organizational infrastructure.

C – DEVELOP ORGANIZATION’S MEASUREMENT PLAN. The purpose of this task is to
develop a plan to adopt software measurement. This plan is like any project plan because the
adoption of technology by an organization must be managed like any other project the
organization would undertake. In other words, develop a project plan that will:
• Establish goals and measurable objectives
• Identify risks and mitigation activities
• Identify measurement adoption tasks

A B C D E F

14

• Identify the organization’s needs for education and training
• Establish resources and budget requirements to meet objectives
• Define milestones and schedules for implementation
• Gain support for and approval of the plan across the organization
The goals of the project planning are to:
• Establish specific objectives – goals, quotas, or target.
• Define high-level requirements of a statement of work
• Define a realizable, measurable approach to meeting those objectives – actions and

strategies to follow
• Risk management – identification of risks, probabilities of occurrence, and mitigation steps
• Establish cost and schedule baselines – time, people, other resources
• Set and manage expectations

D – DEFINE AND USE SOFTWARE METRICS. The purpose of this task is to execute the
software measurement adoption plan. The goal is to see the results of measurement in action
within the organization.
• Execute the plan
� Define needed information and data that fulfill the information needs
� Define software measures to provide needed information
� Ensure the measures support organizational objectives
� Implement the defined measures in pilot projects
� Evaluate progress against plan
• Provide education and training, keyed to your organization, to support software measurement

E – EVALUATE RESULTS. The purpose of this task is to determine how well the initial
measurement objectives have been met and to establish a motivation to refine and improve the
measurement program over time. The steps are to:
• Determine whether the organization reached the goals and objectives stated in the plan
• Determine whether some goals are unfulfilled
• Establish how the current software measures support objective “data-driven decision

making.” For example,
� Has a project performance baseline been established?
� Are historical data kept to help predict the organization’s performance on new projects?
• Establish new measurement goals the organization needs to fulfill. For example,
� What decisions are still being made without data to support them?
� What questions need to be answered using objective means?

F – DETERMINE ON-GOING NEEDS. The purpose of this task is to provide the foundation to
evolve measurement implementation within the organization. Following are questions to be
answered to gain insight into the ongoing measurement needs for the organization:
� Is there support to continue work on the measurement goals left unfulfilled?
� Do the current measures show how well the organization is meeting its objectives?
� Do the current measures provide the information needed to support management decisions?
� Do new goals support the organization’s mission?
� Does ongoing measurement implementation and refinement have a sponsor?
� Who is accountable for implementing and using software measurement to fulfill the new

goals?

Training or Work Assignments Contributing to Basic Knowledge:
This skill should have familiarity with the following DOD software measurement initiatives:
� Practical Software Measurement (PSM), Joint Logistics Command, Software Productivity

Solutions, Inc.
� U.S. Army Software Metrics / Software Test & Evaluation Panel (STEP) Metrics, DA PAM 73-

7, Chapter 10, 15 Jul 96 (pre-publication).

15

� CECOM Streamlined Integrated Software Metrics Approach (SISMA), U.S. Army CECOM
Software Metrics Working Group, Software Productivity Solutions, Inc.

� SEI Software Engineering Measurement & Analysis, Software Engineering Institute (SEI)

Developmental Path:

Training or Work Assignments Comprising Developmental Path:

Sustainment to Maintain Expertise:

3.2.2.3.8 Software Requirements Analysis (SRA):

Description of Skill: Software Requirements Analysis (SRA) is the translation of user needs into a
complete set of quantifiable, measurable, and testable software requirements; i.e., what the system software
must do considering the environment in which it is to operate. Thorough requirements analysis includes a
comprehensive cost/benefit analysis, an estimate of the resources required to develop, operate, and
maintain the software, and regulatory or policy controls that affect software development and operation.
Requirements baselined during the SRA phase are the basis for subsequent testing activities, which
determine whether a requirement has been correctly interpreted and implemented. The Software
Requirements should be testable. Ideally, if the contract and schedule allow, some overlap between
requirements and design phases should be allowed.
The product of this phase is a set of control and data flows, supplementary text, and graphic materials that
fully describe the functions the software must perform, including specific algorithms and step-by-step
processing. Traceability between SRA products and specific user requirements (typically in the System
Specification) should be documented. One product is the Software Requirements Specification, which
contains the Software Requirements. The traceability between system requirements and software
requirements is essential.
The analysis and definition of software requirements is the most important, yet difficult phase of any
software development. If done improperly, the impact can be devastating, and resulting system
deficiencies may be difficult, if not impossible, to correct. If done correctly, this phase will save lots of
time in design.

Basic/Minimum Knowledge:
• Familiarity with various structured analysis techniques including:
• Functional decomposition
• Hierarchy diagrams
• Object-oriented analysis
• Data flow analysis
• State transition charts
• Familiarity with the following software development methods which provide views of the system from

different perspectives:
• Object-Oriented
• Process-Oriented
• Behavior-Oriented
• Familiarity with Domain Engineering and Software Reuse concepts
• Ability to evaluate and use CASE Tools to support SRA
• Strong communication skills are needed to ensure understanding of user needs
• Familiarity with one or more high level programming language
• Knowledge of System Engineering concepts commensurate with the GS-854-13 level
• Knowledge of the importance of interface definition between software components. For example, what

data does one software component expect to get from another? If one component changes, who needs
to know?

16

Training or Work Assignments Contributing to Basic Knowledge:
• System Engineering Training (that emphasizes Software Intensive systems)
• Basic Army 101 courses (for example C4I principles) to better understand user requirements

Developmental Path:
• BS Degree in Computer, Electrical, or Software Engineering
• DAU Courses, Software Acquisition Management, SAM 101, 201, and 301
• DAU Courses, SYS 201 and SYS 301
• MS Degree in Software or Computer Engineering
• Rotational or Training With Industry Assignment on a development project during SRA phase

Training or Work Assignments Comprising Developmental Path:
• Assignment to multiple software intensive projects in the requirements analysis phase
• Complete Software Engineering related courses

Sustainment to Maintain Expertise:
• Completing Software Engineering related University Courses
• Attending Industry Conferences and Symposiums
• Periodically attending training on new Tools and Methodologies
• Participation in the SRA phase of a STRICOM project

3.2.2.3.9 Software Resource Estimation (SRE):
Description of Skill: The skill of Software (SW) Resource Estimation (SRE) is one of many keys to
successful project management. SRE encompasses the need to accurately estimate the expected effort
needed, to complete a project's software development effort IAW proposed completion dates. The esoteric
nature of SRE stems from the fact that most (if not all) cost-estimated techniques are based upon past
experiences. These experiences include those of the estimator as well as past performance of a contractor
captured by collection of quantitative data from there past projects. Analysis of this collected quantitative
data entails being able to estimate and analyze software metrics of resources. These metrics can include
estimates of the software development efforts - size, expected manpower needs; cost; and progress in
meeting programmatic milestone/schedule dates.

Basic/Minimum Knowledge: An understanding of structured development and an understanding of object-
oriented development methodologies. An understanding of developmental concerns and cost drivers to
include:
• Requirements creep coupled with unrealistic expectations;
• Incorporation of rapid prototyping/feature development methodologies and concerns
• Positive effect of OOD methodologies;
• Noncoding tasks such as CM/QA, Test Interface control, and documentation taking time and money to

complete;
• Need to rethink the design due to changes in operation requirements;
• Over optimistic schedules for alpha and beta testing;
• Need to use project management software for estimation of task completion times for each task;

identifying critical paths; and establishing final dates.
A development cycle must specify, design, prototype, review, implement, and test - should be established.
Basic knowledge required should include the ability to identify which metrics are being used on a program;
consider their influence and impact; determine whether they help predict time or quality of development.
Should be able to identify irrelevant metrics while adopting appropriate ones. Should be able to look at
system requirements, and contractor proposal or metrics report, and estimate the software resources
required for the project, including software size, manpower, cost, and progress.

Cost and Schedule Estimation Techniques that are required include:
• Time for analysis, design, implementation, and testing;

17

• Hierarchy metrics, including nesting level, number of abstract classes, "fanout
• Methods metrics, including size (in lines of code) and number of parameters;
• Coupling and cohesion metrics;
• Reuse metrics.

Advanced Knowledge:
The following is a list of a number of cost estimates commonly included in discussions of general software
engineering cost models.
• Algorithmic Models, including algorithms for producing a software cost estimate e.g. COCOMO;
• Rules of Thumb, including guidelines that have evolved within the software engineering community

over time
• Expert Judgement, including consultation with one or more experts;
• Estimation by Analogy, including comparisons with completed projects;
• Design to Cost, including matching the product to the effort (cost) available;
• Price-to-Win Estimating;
• Top-Down Estimating;
• Bottom-Up Estimating.

18

Training or Work Assignments Contributing to Basic Knowledge:
The entry-level person must have a BS Degree in Computer Science, Electrical/Electronic, or Software
Engineering. The entry level person must persue the following training to progress to the mid level status:
• DAU courses in Software Acquisition Management to include SAM 101and SYS 201
• Graduate courses in Industrial Engineering (interactive Simulation), computer science or engineering,

training with industry, system engineering training with emphasis on software intensive systems and/or
use of cost estimation and other CASE tools for systems’ development.

Training and Work assignments for Mid level Developmental Path:
• Masters. Degree in Industrial Engineering (Interactive Simulation) or Computer Science/Engineering.
Rotational or Training with Industry Assignment on a development project during SRA phase.
• DAU Courses, Software Acquisition Management, SAM 201.
• DAU Courses, SYS 301.
• Cost Estimation training and further development in CASE tool usage.
• System Engineering training that emphasizes software intensive systems.
• Basic Army Information Assurance (IA) and Automated/Computer Systems courses.
• Be assigned on a proposal evaluation team, to be exposed to how the contractor estimated its

required resources.

• IBR (Integrated Baseline Review) training, to learn earned value cost and schedule metrics.
• Study previous SW metrics methods. Look at such things as how SLOC was estimated against

requirements, and cost against SLOC). Become proficient software size and manpower estimates
through study of like systems’ requirements.

• Be assigned as the metrics POC on a simulation project.

Sustainment Training and work assignments to Maintain Subject Matter Expertise:
To maintain expertise, I recommend periodic training and assignments as described above. In addition:

• DAU Courses, Software Acquisition Management, SAM 301
• Completing Software Engineering related University Courses
• Attending Industry Conferences and Symposiums
• Attending training on new Tools and Methodologies
• Participation in the SRA phases of STRICOM projects
• Attend project’s metrics training. This training gives insight into the contractor’s justification and

method for SW resource estimation. Participate in the approval process for creation of realistic
metrics.

• Participate in symposia and conferences in the creation and acceptance of MOE for systems’
effectiveness and acceptance.

3.2.2.3.10 Software Test Engineering Methods (STEM):
Description of Skill: Knowledge of software requirements traceability, from requirements decomposition,
to software documentation, through software verification. Knowledge to include development and
requirements of test portion of software development files. Basic knowledge of software development
methodologies, software configuration management, and software quality assurance, and their relationship
to software testing. Basic knowledge of the Test Incident Report generation, monitoring, and closure
process. Knowledge of unit/component/configuration item requirements definition, testing, integration and
testing processes and techniques. Means to generate the appropriate test cases, requirements, procedures
and expected outcomes. Knowledge of boundary testing and various stress testing techniques (erroneous
input, etc). Knowledge of usage of test drivers and stubs within unit/component/CI testing, and their
configuration management requirements. Knowledge of automated software-testing tools. In depth
knowledge of various testing techniques to include path testing (and path generation/complexity

19

measurements), mutation testing, symbolic execution, state transition testing, transaction flow testing, etc.
Knowledge of Integration testing techniques (top-down, bottom-up, big bang, sandwich). Understanding of
software metrics and their relationships to software testing (complexity, depth of testing, McCabes,
Halstead’s, etc).

Basic/Minimum Knowledge:
• Alpha and Beta testing, and their relationship to fielding and the means to track problems through

these forms of testing.
• The difference between testing and debugging.
• The differences between host and target software testing and the limitations/concerns of each test type.
• Cold start procedures, value, intent and process, and its relationship to software CI testing.
• Software reliability testing, tools and techniques.
• How to perform software “spare” resource (sizing, timing, etc) testing.
• The various software development techniques (structure design versus object oriented versus real-time

systems) and their impacts on testing methodologies.
• The differences between developed software, COTS software, and 4GL software testing and

requirements verification.

Training or Work Assignments Contributing to Basic Knowledge:
DAU courses:
Basic Software Acquisition Management (SAM 101)
Introduction to Test and Evaluation (TST 101)

Developmental Path:
Participate in development of software test plans, onsite acceptance testing, and Test Incident Report
meetings to get a feel of the STEM process and procedures.

Training or Work Assignments Comprising Developmental Path:
DAU courses:
• Intermediate Software Acquisition Management (SAM 201)
• Intermediate Test and Evaluation (TST 202)

Sustainment to Maintain Expertise:
Attend conferences (ex. Software Technology Conference, ITSEC, CALS) to keep up to date on the latest
practices and programs used in software test and evaluation.

3.2.2.3.11 Trusted Software Development Methodology (TSDM):

Description of Skill: The skill of developing software IAW a Trusted Software Development
Methodology (TSDM) requires knowledge of TSDM trust principles as outlined in the July 2, 1993
TSM Report. {Note: This document contains a rationale for each trust principle; a set of
compliance requirements for the trust principle as well as identification of applicable trust classes.
In addition, the document identifies a list of associated DoD requirements that describe activities
similar to those addressed in the trust principle and provides a list of useful references for the
trust principle.}

Basic/Minimum Knowledge: The basic knowledge required includes an understanding of
security to include factors such as threat, vulnerability, safeguards, and configuration
management (CM). The candidate should exhibit familiarity with hardware, software, and
firmware that have been shown to be robust and secure enough to support TSDM such as
appropriate relational database management systems and operating systems (OS) e.g. Oracle
meeting NSA Orange book Levels and Sun Solaris Trusted OS. An understanding of
encryption/decryption devices is expected as well as knowledge of appropriate networking
hardware items such as routers and switches that have been approved for operation in a
collateral environment (supporting operation at multi-echelons of security).

20

As a minimum, the candidate should understand each of 25 TSDM principles that can be grouped
into the following four areas:
• Management Policy (trust principles 1-6);
• Environment Controls (trust principles 7-10);
• Environment Management (trust principles 11-14);
• Software Engineering (trust principles 15-25).
Should understand what discriminates between the five TSDM Levels:
• T1 (minimal trust);
• T2 (moderate trust);
• T3 (preferred);
• T4 (malicious attack);
• T5 (ideal).
Because TSDM is a process to measure software/information assurance (IA), a candidate should
be cognizant of the implementation/integration of each of the TSDM 25 principles into a project's
general software development process. This means an understanding of the importance that a
programs Software Development Plan (SDP) plays in ensuring acceptable TSDM practices are
being carried out, is necessary. This is because, the SDP will capture TSDM compliance
methods as well as preliminary software engineering team risk analysis results.
Additionally, it is important to understand how TSDM compliance will be identified and tracked
using software engineering analysis standards such as the Software Engineering Institutes (SEI)
Capability Maturity Model (CMM). Knowledge is required to be able to estimate of the cost
associated with providing TSDM training on a program to the software engineering team
members. Finally, knowledge of software reuse and metrics collection is necessary.

Training or Work Assignments Contributing to Basic Knowledge:
Developmental Path:
• BS Degree in Computer, Electrical/Electronic, or Software Engineering.
• DAU Courses, Software Acquisition Management, SAM 101, 201, and 301 (entry, Mid, Expert
levels respectively).
• DAU Courses, SYS 201 and SYS 301 (mid and Expert levels).
• MS Degree in Industrial Engineering (Interactive Simulation) or Computer Engineering.
• Rotational or Training with Industry Assignment on a development project during SRA phase.
• Cost Estimation training utilizing state of the art CASE tools.
• System Engineering training that emphasizes software intensive systems.
• Basic Army Information Assurance (IA) and Automated/Computer Systems courses.
• Assigned to a proposal evaluation team, to be exposed to how the contractor estimated its

required resources.

• IBR (Integrated Baseline Review) training, with emphasis on earned value cost and schedule
metrics, like ACWP and BCWP.

• Study previous SW metrics methods. For example, WARSIM is using knowledge obtained
from CCTT SW metrics. Look at such things as how they estimated SLOC against
requirements, and then cost against SLOC . Review SW size and manpower estimates, both
projected and actual.

• Be assigned as the metrics SMS on a simulation project.

Training or Work Assignments Comprising Developmental Path:
• Assignment to multiple software intensive projects in the requirements analysis phase
• Complete Software Engineering related courses

Sustainment to Maintain Expertise:
To maintain expertise, I recommend periodic training and assignments as described above. In
addition:

21

• Complete Software Engineering related University Courses
• Attend Industry Conferences and Symposiums
• Attend training on new Tools and Methodologies
• Participation in the SRA phase of a STRICOM project
• Attend project’s metrics training. Which depicts the contractor’s justification and method for

SW resource estimation.

